Fuzzy-Rough Nearest Neighbour Classification
نویسندگان
چکیده
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.
منابع مشابه
Fuzzy-rough nearest neighbour classification and prediction
In this paper, we propose a nearest neighbour algorithm that uses the lower and upper approximations from fuzzy rough set theory in order to classify test objects, or predict their decision value. It is shown experimentally that our method outperforms other nearest neighbour approaches (classical, fuzzy and fuzzy-rough ones) and that it is competitive with leading classification and prediction ...
متن کاملA New Approach to Fuzzy-Rough Nearest Neighbour Classification
In this paper, we present a new fuzzy-rough nearest neighbour (FRNN) classification algorithm, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the expe...
متن کاملKernel-Based Fuzzy-Rough Nearest Neighbour Classification.dvi
Fuzzy-rough sets play an important role in dealing with imprecision and uncertainty for discrete and real-valued or noisy data. However, there are some problems associated with the approach from both theoretical and practical viewpoints. These problems have motivated the hybridisation of fuzzy-rough sets with kernel methods. Existing work which hybridises fuzzy-rough sets and kernel methods emp...
متن کاملFuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects
In recent years, many nearest neighbor algorithms based on fuzzy sets theory have been developed. These methods form a field, known as fuzzy nearest neighbor classification, which is the source of many proposals for the enhancement of the k nearest neighbor classifier. Fuzzy sets theory and several extensions, including fuzzy rough sets, intuitionistic fuzzy sets, type-2 fuzzy sets and possibil...
متن کاملFuzzy-rough nearest neighbor algorithms in classification
In this paper, classification efficiency of the conventional K-nearest neighbor algorithm is enhanced by exploiting fuzzy-rough uncertainty. The simplicity and nonparametric characteristics of the conventional K-nearest neighbor algorithm remain intact in the proposed algorithm. Unlike the conventional one, the proposed algorithm does not need to know the optimal value of K. Moreover, the gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trans. Rough Sets
دوره 13 شماره
صفحات -
تاریخ انتشار 2011